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ANALYSIS OF WAVES IN BOUNDED MAGNETOACTIVE PLASMA

Y. J. Seto (Dr. A. A. Dougsl)

The investigation dealt with here is an analysis of radially
propagating waves in a bounded magnetoactive plasma. The configuration
conceived for this analytical investigation is a partially ionized
plasma slab, bounded by two infinitely large conducting plates of
finite separation. The plates may be in direct contact with the plasma
or insulated from it by thin layers of dielectric materials. The static
megnetic field is imposed upon the plasma in a direction normal to the
plates. The waves are generated by a current source in the plasma with
en arbitrary current distribution. This portion of the report describes
the preliminary study that has been carried out.

Although the main theme of the proposed analytical problem 1s
quite specific, in the course of the analysis an effort has been made
to utilize techniques as general as possible in hope that the methods

may be employed elsewhere to solve other types of problems as well.

I. Homogeneous Wave Equation in Anisotropic Media
The presence of a static magnetic field in a plasma region results
in an effective electrical conductivity of the plasma which is a dyadic

form. Assuming monochromatic waves, the wave equation may be written
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IxV*xE -&-E =0 (2-1)

where ﬁ is the electric fleld intensity. Assuming spatial homogeneity,
the dyadic'2 is a function of the frequency, the permittivity, the
permeability, the magnetic field, and the effective electrical conduc -
tivity of the plasma only.

Equation (2-1) 1s seen to resemble a Helmholiz equation except that
i; is a dyadic; it may be called a dyadic-vector Helmholtz equationm.
Tt is well known that the scalar Helmholtz equation 1s separable into
eleven different coordinate systems, and that the vector Helmholtz
equation is separable into énly six coordinate systems.l Despite the
fact that the dyadic-vector ﬂblmholtz equation has been frequently
encountered in connection with the studies of crystal materials and
plasma fields, and that its solutions have been obtained and used
extensively for problems involving the rectangular coordinate system
and the circular cylindrical coordinate system,2 to this author's
knowledge the separsbility of the dyadic-vector Helmholtz equation has
not yet been fully investigat;d. In this work, the separability of the
dyadic-vector Helmholtz equation is studied, since by determining the
coordinate systems in which the equation is separable one has gained
knowledge of exactly in what coordinate systems the equation is
solvable by a separation method. In the application of boundary value
problems, separation into the form that facllitates the fitting of

boundary surfaces is most desirable. Hence, it is advisable to separate
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the dyadic-vector Helmholtz equation into terms of longitudinal, f,
and transverse, M and Ff, vector components.

The first term in Eq. (2-1) is a vector operator term. A review
of the separability of a vector Helmholtz equation shows that the
coordinate systems in which the vector Helmholtz equation is separable
must be a coordinate system in which one of the scale factors is
unity, and that the ratio of the other two scale factors must be
independent of the coordinate corresponding to the unity scale factor.
The six coordinate systems which meet these requirements are the
spherical, the conical, and the four cylindrical coordinate systems.
If the first term of Eq. (2-1) is to follow a similar pattern of
separatioh, the coordinate systems in which Eq. (2-1) is separsble must
fulfill the same requirement that the separable coordinate systems for
vector Helmholtz equation fulfill.

The dyadic ig in Eq. (2-1) is by no means an arbitrary constant.

For the purpose of this work, i may be limited to the form:
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Eq. (2-2) implies that the static magnetic fleld is in thé direction

parallel or anti-parallel to the coordinate corré&sponding to the unity

scale factor. Without losing generslities, one denotes this coordinate
55 , and 1ts unit vector Zié . A close examination shows that only four

out of the six coordinate systems oi'e physically realizable for such



alignment of the static magnetic field; namely, the four cylindrical
coordinate systems including the rectangular, the circular cylindrical,
the elliptical cylindrical, end the parabolic cylindrical coordinate
systems. In either systenm, é} corresponds to the z axis. It may first
seem to be pessimistic that the number of permissible coordinate
systems has been reduced to only four right at the onset. Fortunately,
however, it turns out that no other restrictions will be imposed that
will further reduce the number of permissible coordinate systems.

In attempting to find the solution of Eq. (2-1), the difficulty
lies in the fact that the equation is a purely transverse one, while
due to the dyadic j: » ‘the vector field.fﬂ in general, 1s not entirely

transverse. One may assume that:

E=7-v¢ (2-3)
and
V-A=o (2-4)

Expending jg . £ into vector forms, Eq. (2-1) becones:
2
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Tt is also recognized that Eq. (2-1) implies:
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Equations (2-5) and (2-6) constitute a set of basic equations with $s
being the explicit coordinate., The subscript AL indicates the
components of operators or vectors which are perpendicular to Ei; ’
whereas || indicates those parellel to 5\; .

It is advissble to further separate the transverse vector K into
two components, one tangentlal to the Sf— C surface and the other with a

component normal to the surface. Thus:

— —_— ..J
A= N+ N
— - (2-7)
M= ¥ xa,

—

A= udi - K&

Substitute Eq. (2-7) into Equations (2-5) and (2-6), after some

manipulations obtain the following set of equations:

(7 +§;§(z‘¢)*é.%(z‘)()~ér g# =0 (2-8)
’\Zz(V‘D() a;:( ) +h(2y)+ qf;? =0 (2-9)

b (DY) + thi-4), (D)) 4 TP 4 3G = 0 (2-10)



vhere Equations (2-8) and (2-9) are the L component and |l component
of Eq. (2-5), respectively.
Close examination of Equations (2-8) to (2-10) shows that solutions
may be obtained if the three scalar functions each satisfies:
’Vz'qJ +T'dY = o \
X+ T =o (2-11)
TJo + T P =0 /

or
T+ (7 k) Y = o 1
74296 + (TH-%)y = o (2-12)
E7¢-»‘/7"—/,7,,fj¢ = J (
and
—%1%1 + koY = o 1
3
A S (213)
D' > j
-—2—5—_;’2 #ﬁmcp = o

where fr’: is the separation constant for the separation of é; + The

argument 7% 1n Eq. (2-11) or Eq. (2-12) must satisfy a determinant

equation:
(7= k.z ) : ‘//?7- A’T (2-14)
o (T2 7>4)) b =0

#or( 7 bom ) (b= )(T M) o (T243) el




The order of Eq. (2-1%) appears to be too high to be readily solved at
first, but it turns out that if /:e‘ is not a functlon of 7% the result-
ing secular equation is only of fourth order, since the other four
roots, 7T=o and 7=#4. , are trivial and mey be discarded. The

dispersion relation yielded by Eq. (2-1k) is:
(e )fii-Airr ) ot ferikf)-e eas)

Equations (2-8) to (2-10) also indicate that the three scalar functlons,
W,y ,end & , are not independent functions. If the solutions

are written as:

W= A ) Gotfi) hele) I
Y= BEex) 3 (f) hth) ( (2-16)
P=ches) 305) A6

then it is always possible to derive from Equations (2-8) to (2-10)
two algebraic equations relating the three arbitrary constants, A, B,
and C.

In the case of circular coordinates with open boundary in r and

6 , the solutions may be written for an outgoing wave:

Y= Apn Hy (7585 ) €70 55 a3 | o
; ) (2-17)
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and the functional relations are:

B et~ B Con [l B ) ]

(2-18)
= é//ém AM/) Cmn
and
U 3 P R~ b5 G )6
(2-19)
= (o o [l s e

X oo (-4 )

The elgenvalues n are integers whereas k% is:

m T
/km’,z y =0, /,=2 - " " 7

where a 1s the separation disyance between the plates.

IT.. Inhomogeneous Wave Equation and the Green's Function
When & source is present in the plasma region, the source is

-
represented by a source function J, . Eq. (2-1) should be written:

~Llv

VxIxE - E .-.-_:S; (3-1)

It can be shown that Eq. (3-1) 18 solvable in terms of an integral



representation

- or} =
E(?)= | Gerla) » TRy dvs (3-2)

v

=2
where the kernel G CF / f';} is the usual Green's dyadic function except
that instead of satisfying Eq. (3-1) with an impulse source, it satisfies

the following:

Tiux - 4.8 =Fsm2 (3-3)

=
where J is the idemfactor and ;?, 1s the conjugate of 2 . The

use of the conjugate of 2 in Eq. (3-3) 1s necessary if it is wisl_lsd
to include the cases where /? is not Hermitian. Of course, when .I:
is the Hermitian, E’ = a . In addition to satisfying Eq. (3-3),
the Green's function must also satisfy the same boundary condition that
the fleld satisfies.

One technique using tensor relations leading to an integral repre-
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sentation of the Green's dyadic was first developed by Bunkin™ and was
extended by Chow.h’5 Howéver, an integral representation of the Green's
dyadie has two distinct disadvantages: (1) it is not aluays easy to
evaluate an integral, (2) the integral representation of the Green's
function 1s appliceble to problems of infinite domain only. When
boundaries exist, it is desirable to construct the Creen's function

from series of eigenfunctions, which describe the free waves.



The derivation of a Greén's function to be discussed here depends
upon whether there are boundary surfaces parallel to the g=C surface.
For brevity, only the case with boundary surfaces parallel to the
$3= (. surface will be derived here. It is assured that the Green's
dyadic for the case of no boundary surface rarallel to%;c surfaces
may also be derived with the same technique, except for some minor
modifications.

From the previous section 1t is seen that the elgenfunction

solutions of the homogeneous Helmholtz equations may be written:

/@ G X 43 l

/;/Jm” 3_3'.”" ’t""” 43 (3-4)

The index m in Eq. (3-4) designates the eigenvalue index arising

from the separation of & ; » vhereas the index n designates the
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elgenvalue arising from the seperation of the 1 coordinates; it depends

upon the types of boundary in the .. direction. If it is an open
boundary, n 1is & single index; on the other hand, if the boundary is
e closed one, then n 1s & double index. In such cases it might be
more appropriate to replace n by two indices 1, n.

Since the scalers Y/, 4, , and ﬁ,,, are related, Eq. (3-4) can



further be represented in the following form:

N B Gon(5.6) X R34 S)

-
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L o= U Both, 6 )4o(S,) + Yol 5., 68Tl ) R
Tn view of the forms appearing in Eq. (3-5), it may be assumed that the
Green's dyadic takes the foem:

v J 2 2 (3-5)
N 2 Ve bonS 5. 1TE 0 G) = U Bonl5.6.)7:05 )% /

= _A2 L2 L8 (3-6)
G =G v Gu * 4G 3
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P AR ARAD. (3-7 &)
G Stup 2o g 3ld ees (3-7 b)
7N‘ o Zﬂnd{s - VA gpmn?m a-? G/Hﬂ(f’ﬁ’ﬁ /
Go=2 )f Chte + B —2@5 % } Honn (£, 508,) (3-7 ¢)
m,n

vhere £, , G,,, , &nd H.. are function of source coordinates only. The
{ N dependent functions, -é, and ;‘M , are the two independent

solutions of Eq. (2-13); they must be related by elther set of the

equations:
-#’H = .t ém /*:1
d:;* / for closed boundary in £ (3-8 a)

7;;:1 = 7 nFm
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or
;;Z = 2, 4,4,

3 for open boundary in 53 (3-8 b)
I

S:I.nce a closed boundary in 53 is being considered, Eq. (3-8 a) will

be adopted here, and for simplicity only the lower sign is used although
the upper sign will yleld the same result. It is also observed that

- -l -
although the vectors /v, ., N,, , and }__hm are not necessarily
- -

orthogonal in space, but V;S,’fmyaa » 7, » end & are three
orthogonal vectors. If one defines a unit vector 'E , and & two-

variable-dependent function va(g,‘gz) , such that:

v"kp"“"(é“s‘): E\Mn(gugt) -G (3-9)

=1
A .Y
then the wnit vectors b , E' X Gy » 80d Q&3 are mutually orthogonal

3 —
in space. Multiplication of the unit vectors b , b x &, , and

IR
&z in turn into Eq. (3-3) ylelds a set of three mutually orthogonal

equations:

Z{‘(V‘Wﬁ)@m m) ?wm - '(?T (e«v\'pw )(kwé ) kT e"‘“ ﬁwm‘} (3'10)

by v
i - -
= bx&; g(#—\‘_';)

ull -
%{Mﬁm‘ﬁw) éw‘\ - (v.‘* k-\-) (ﬁm'ﬁ: )(bmc'—llwv\) +}9J-((‘3”\“-C"“)+'\"“‘“} (3-1]_)
= b SE-R)

2_](V+le..)(v-+/e“‘)(‘€mgm MG,,.M) k, k.. (\ngs"‘)H“"/X (3-12)

’km a3 C\" r-o )



In Equations (3-10) to (3-12), the relation given by Eq. (3-7) and
Eq. (3-8) has been substituted. The operator 7' is a three
dimensional operator cperating on the observer coordinate functions
only, i.e., (PWE,,) or (.. §.)« Vhen later in the derivation
operation on the source ccordinate is needed, the operators will
be distinguished by a superscript o , for example VO .

In order to express the é:; dependent functions explicitly, and

to express the source coordinate functions in ccmponent form F..

— —
Gmn » a0d H,,, mDay be written.

- 4

= X, X N
E =L@feba,r ERaifay b+ FEis 5%

= a0 . .+ o o = -1
Gom =G,§§'§/ﬁ(§’/:‘§ +(7:(”ﬁ",f‘°)z,(éé) 63—/-6‘”5%!, %/;}J <, (3-13)

n

Hmn Hmn f/é (s )b’(d —me(nf ?/5({?)5 # /’/,..,(¢r f:.)g(q‘sja}

After some vector manipulations, Eq. (3-10) to (3-12) are broken
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into a set of nine sixth.order equations:

Zm(@nwﬁ (0.5 )5 5= Z\k,ﬂ? V= k7T b+ ki }(@m‘ (.35
Y%V?(&fm)mngm .t %:kTv’(vm..m: )@ AN SR
;Wﬁnﬁ)\(% ) 1 Z_;h kY€ fSH-2)

ZW@M\% )Gndd= Z bk onlBonF) ScP-2)

Z@(@nﬁf%»ém en Z ko7t R X Brnr) SCP- 72 (3-1)
;*”(«’m Mol "=Z§ NN CRNPESY

im((e., £ Xt %}_h,(vfk\. N+ R ) Bonfor) $7 -7

> L AN oo QJV«»MWA AL Uy

Z"ﬁ%ﬁi AR5 ), {/a,-+(v.~/e4 }(aﬁf)&r )

mn m_n

vhere the operator 74 is also an observer coardinate operator; it can
be considered to be operating on any one of the two or three observer

coordinate functions immediately to its right. Written in its entirety,

%7(18

7’2 = (T A (Trkn) { R+ vhtg)/ -4 é;)f b (T b )*} (3-15)
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Comparison of Egsl (3-15) and (2-14), m( may further be simplified into

the form:

2

TR T) , AF T T

m = (3"16)

RTETITT) o T

vhere T,” and 7,” are the two non-trivial roots of Eq. (2-14), and the
relation of Eq. (2-11) has been used in arriving at Eq. (3-16). By

the same token, all operators v" to the right of the equality sign in
Eq. (3-14) are replaced by (-T'). Substitute Eq. (3-16) into Eq. (3-14)
and drop out the functions common to both sides of the equality sign.
Multiply both sides by £ g}, vbichever one is sppropriate.
Then integrate over the entire bounded é‘s space, utilizing the orthogon-

sl properties of the elgenfunctions -/,; and jm :
* 2

Jh£r Ay =y,

f fm 7”*"[ y = A}
v ' {3 7

vhere /L;'—M and /L}'”1 are norralizing factors. The asterisk indicates

the complex conjugate is employed. The integration yields distinct

solutions for the ¢, dependent functions.

-ﬁ({,)_ﬁ(é) 7[(;3

(3-17)

—~——

9.6 /‘g ff/
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The remains of Eq. (3-14) are two dimensional equations:

(e k)G Pl = T2 bl + o TI5E-2) (8 a)
(T 72b)C, Fon = :,-YL%,T‘(T%,-M)&E- o) (3-18 v)
(@7 k2P = - BT S22 (3-18 c)
(g >k )ﬁnnéfm = kff?km $5-2.) {3-18 a)
(T+7" b oG —“;7'—(1 4)SG-7) (3-18 e)
(Vo7 W Gram T { b (774 55 2u) (3-18 1)
(G474 s = ?E(ftk,,)(ft 2)Sez 2 ) (3-18 &)
(w742 )0 Ho= ,;(T—'é,)/r—&‘)/r—/’ ) $Z-5) (3-18 h)
(B4 )%% '7—) +(r‘-fé_¢)‘/5(r‘f-f‘.i) (3-18 1)
vhere Lo
25 Ao
-2 1.- 2 2 kS
{ LR T (3-19)

Gz = 2 2
1/&7‘(7“-7,‘) it 7T—T

Equations (3-18 ¢), (3-18 £) and (3-18 1) directly involve the function
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gDnag,g) they can be represented by a symbolic equation:

(VN‘T #. ); ¢, 4168) = ((’om‘)g(%‘ 80557 (3-20)

771

One has reduced the problem to that of searching for an appropriate
two-dimensional scalar Green's function. The problem is thus greatly
simplified.

The remaining equations in (3-18) all involve Q. .(%,&.) .
Since the function (.. comes from <[P, , one may expect that
the solutions for Eq. (3-20) may somehow be related to the solutions
of the remaining six equations in Eq. (3-18). Indeed, it is so when it
1s observed that if (., satisfles Eq. (2-12) then f.. and L¥. % as

must satisfy respectively:

(4 T ) (W on) = o

and

CxUx (QRnx &)= (T4 T X&) =0

If Egs. (3-18 a), (3-18 d) and (3-18 g) are multiplied by the dyadic
B XA ) ( L& ), the left-hand sides of these equations mey be

shown to be symbolically:
(V_:'*‘ Tz'/é:: @“7:n @)‘E\; (t)( Z;)
— (Wr Tk = TR WER R &, %) (3-21)

Pon T8, B33

= (T 4) (@ +T k)
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Similarly, multiplying ﬁ ﬁ to Egs. (3-18 1), (3-18 e) and (3-18 h),

their left-hand sides may be shown to be

(T 7= RY) B i BE

i

(et T - ) hn L G
(3-22)

A
(TR (U T )| B T B

The two bars bracketing a function indicate only the scalar 1s being
considered.

Now, 1f 7% end ), 0] are 1dentified with T (££/5%), then all
nine equations in Eq. (3-18) have been reduced to one symbolic
equation (3-20). Exact solutions of Eq. (3-20) depend upon the
coordinate systems employed and the type of boundary considered. In
general, it can be written symbolically:

%ﬁﬁf’ﬂ)ﬁi‘:m for closed boumndary in L

= ~ (3-20)
o | Lot preepBsat) sor open bommiary 1n £

v
In the case of a closed boundary, L;,pn ” £= 5?:; ? is the complex
b 2
conjugate of 'ﬁ” nt ? and A_h and y are the two normalization
~/
factors. In the case of an open boundary, ﬁem and ¥,,, are the two
independent solutions of Eq. (2-12) and 1)" is a constant involving

the Wronskian of the two independent solutions. With Eq. (3-20)
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solved, the Green's dyadic may then be readily obtalned:

d 2 2 2 2
A ;{zs@,[é,ﬁ/ xaj{,,({,)/ {7-;,{? (ﬁﬁt;@x_:_%ﬁiéﬂ)x
A ?f,/wf({,) -W%(T Aok /79‘0”"(?{/7[;

oy T
_ %‘r;—: & ;‘)g"f,gm_,;

m

-ﬂ e
Gy = { (f,f/-i— + (TR4) 5. VZ{N%/"

™ bhde
¥z
k" /ﬁm)w(&/ﬂgu Vé/(z —..Mf,;f £ t;";"’%:/

4-/
54. Z {Z BE )L G ) + L, (5.4) ;7—(‘{‘"/
h“l

7&5—7’264 f £Ix5; /*f ] * WM.L fﬂf.ﬁ%'/{u;ﬁo/

7”,,:-[‘%7 (7 '@)"j mn(ff»/f /{J/ 4 }
In circular cylindrical coordinates with open boundary in r and o,

the solution for Eq. (3-20) is:

' ‘7 ’7er ('7"") ) F£n
gélg)= (Const) e’ -5, (3-26)

j;(’f’ﬂ /'41(?}’7"/ ) F2r

e o
Tdentifylng £ (5,) with Sn4,3 and §(5,) with Cask,3 in line with
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Eq. (2-17), the Green's dysdic is: (for r< /> case only)

= k;( 2/@/ ‘é,: *}t’l’n’ri r / ° -
G;Zn 7}_7;7 i Z; | G e "i/m}‘ /f 7 H bpwe :‘%4}' PO R VI R

,/7.74)( - ,,@m [7/3(“ ” /%/WMC V/M#m;wén;,
"‘Yﬁy[é' (- 'é./TEéZ])(/n('f’/HﬂVl/f e o&v&;w"% aa
e s k’"/f TSl e "ot ek

+[zjn-”f"/<'3 _/[Zof/nﬁ(/m/c'm& /wi)ﬂ. 43,

e, (3-27)

,;;'.%%f/[q/ﬂ(; i1 " d; ][ Mg a,]mé,; Lo b3,
| [ Tovere™s J[ T, Urse” ﬁa‘jané.,;wkm;/
;—M Q—IZ]’ m/e”’%/ u)'e/e' /15y _/,a._.l'mg L)

v‘[er/f BT "] sty b

ITI. Remarks and Proposed Future Studies

The results obtained in the preceding sections enable one to extend
considerably his scope of investigations in the problems of waves
propagation in plasma. For example, waves generated by a curi'ent sheet
gource of finite width may be analyzed in elliptical cylindrical

coordinates. Waves generated by a semi-infinite sheet of current will
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require analysis in parebolic cylindrical coordinates. Investigation of
problems similar to these were previously avolded due to inadequate
tools.

The work to be carried out in the future will be concentrated on
the investigation of the properties of radially propagated waves;

especially the properties of the waves near the source regionm.
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